Prediction of Multivariate Air Quality Time Series Data using Long Short-Term Memory Network
نویسندگان
چکیده
Malaysia often suffers from haze problems almost every year. Therefore, there is a need for good air quality forecasting model monitoring and management purposes. In this study, the based on Long Short-Term Memory Network (LSTM) Auto-Regressive Integrated Moving Average (ARIMA) was developed. The prediction of particulate matter 10 micrometres or less in diameter (PM10) could be made both models, their performance compared. purpose comparison between two models to determine most suitable use predicting PM10 since it dominant pollutant time, especially during period. This study used data obtained Department Environment July 2017 June 2019. results showed that using multivariate LSTM better than univariate ARIMA with lowest root mean square error (RMSE) those selected stations. lower RMSE value means provide higher accuracy PM10.
منابع مشابه
Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملthe effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولTime Series Forecasting Based on Augmented Long Short-Term Memory
In this paper, we use variational recurrent model to investigate the time series forecasting problem. Combining recurrent neural network (RNN) and variational inference (VI), this model has both deterministic hidden states and stochastic latent variables while previous RNN methods only consider deterministic states. Based on comprehensive experiments, we show that the proposed methods significa...
متن کاملForecasting Across Time Series Databases using Long Short-Term Memory Networks on Groups of Similar Series
With the advent of Big Data, nowadays in many applications databases containing large quantities of similar time series are available. Forecasting time series in these domains with traditional univariate forecasting procedures leaves great potentials for producing accurate forecasts untapped. Recurrent neural networks, and in particular Long Short Term Memory (LSTM) networks, have proven recent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Malaysian Journal of Fundamental and Applied Sciences
سال: 2022
ISSN: ['2289-5981', '2289-599X']
DOI: https://doi.org/10.11113/mjfas.v18n1.2393